An official website of the United States government
Here’s how you know
Official websites use .mil A
.mil website belongs to an official U.S.
Department of Defense organization.
Secure .mil websites use HTTPS A
lock (
) or https:// means you’ve safely connected to
the .mil website. Share sensitive information only on official,
secure websites.
For mobile, landscape view is recommended.
Modeling Predictions of Munitions Penetration in a Variety of Soils
SERDP, Munitions Response Program Area
Released November 4, 2014
Closed March 10, 2015
The objective of this Statement of Need (SON) was to develop models to predict the penetration depth of common military munitions in various soil conditions to support planning for munitions response actions and subsequent risk management decisions. Factors that may affect penetration depth include the platform from which the munition is delivered, whether the munition is delivered via direct or indirect fire, the initial velocity, and soil conditions at the target area. Other factors may also play a role and should have been addressed as appropriate in the proposed model.
The ultimate goal of this effort was to develop a simple, parameterized model that takes as input these initial conditions and predicts the likely and maximum depths of penetration in a range of realistic conditions. The product of the SEED effort should have demonstrated physics-based models that make realistic predictions within a defined set of conditions. The SEED proposal should have articulated specific metrics of success and/or criteria for establishing proof-of-concept. It was expected that additional work beyond the SEED would be required to produce the desired end product.
As a result of past military training and weapons testing activities, munitions are present at ranges on military installations and at sites designated for base realignment and closure (BRAC) and Formerly Used Defense Sites (FUDS). On many of these sites, the chosen remedy is to remove munitions from the subsurface. Modern geophysical surveying techniques can be used to characterize these sites. However, the most commonly-used electromagnetic induction sensors have a limited depth of detection that is well understood. Less well understood is the likely depth at which munitions will be found. Site managers and regulators require evidence that any munitions present are within the detection depth of the geophysical sensor in order to have confidence that the munitions of concern are detected and removed. Alternatively, this information will inform risk management decisions if the munitions are likely to reside at depths beyond the sensor’s detection capability.
It is often said that 95% of all buried objects on a munitions site are located within the top 60 cm of soil. While this rule of thumb may be valid in many cases, modeling results to support this would increase stakeholder confidence in a remediation. Although it will never be possible to completely specify the conditions used for training conducted decades ago, useful guidance could be obtained from a reliable model based on typical firing parameters and present day site conditions.
Complementary SERDP/ESTCP-Funded Projects: Currently, SERDP and the Environmental Security Technology Certification Program (ESTCP) are supporting a wide array of efforts addressing the munitions response problem. Proposers are strongly encouraged to become aware of ongoing and recent research supported by SERDP and ESTCP and to clearly articulate how the proposed work is novel or different than existing work. For more information regarding these efforts, please consult the SERDP and ESTCP web site.
To meet the objectives of this SEED SON, proposals did not exceed $150,000 in total cost and approximately one year in duration. Work performed under the SEED SON should have investigated innovative approaches that entail high technical risk and/or have minimal supporting data. At the conclusion of the project, sufficient data and analysis should be available to provide risk reduction and/or a proof-of-concept. SEED projects are eligible for follow-on funding if they result in a successful initial project.